题意
给定 n n n个机器人的位置
现在每个机器人往左或往右移动,要求最后相邻机器人间的距离差为 d d d
最小化机器人移动的最大距离。
考虑固定第一个人的位置 a 1 a_1 a1
如果递增
第二个人是 a 1 + d a_1+d a1+d,第三个人是 a 1 + 2 d a_1+2d a1+2d以此类推
那么可以得到每个人需要移动的距离记作 d i s i dis_i disi
那么可以得到一个移动的最小值 m i mi mi和最大值 m x mx mx
那么 a 1 a_1 a1一定是移动 m x − m i 2 \frac{mx-mi}{2} 2mx−mi距离来均衡一下比较好
如果 a 1 a_1 a1不在这个点上,往左,右边离这个点的距离就更大了,反之亦然
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll inf = 1e18;
const int maxn = 1e6+10;
typedef long long ll;
ll n,d,a[1000009];
ll cal()
{
ll mi = inf, mx = -inf;
for(ll i=0;i<n;i++)
mx = max( mx,a[i]-i*d ),mi = min(mi,a[i]-i*d );
return mx-mi;
}
signed main()
{
cin >> n >> d;
for(int i=0;i<n;i++) scanf("%lld",&a[i] );
ll ans = cal();
reverse( a,a+n );
ans = min( ans,cal() );
cout << ans/2 << ".";
if( ans&1 ) cout << 5;
else cout << 0;
}