Birthday Paradox(简单生日概率)

vj传送

一眼看过去发现就是个概率题目

m m m个人,一年有 n n n

假如所有人生日都不在同一天,选法是 C n m ∗ m ! C_{n}^{m}*m! Cnmm!

而总选法是每个人都有 n n n种选法m就是 n m n^m nm

概率是 C n m ∗ m ! n m \frac{C_{n}^{m}*m!}{n^m} nmCnmm!

然后换种思想,直接求所有人生日不同天的概率,就是

n n ∗ n − 1 n ∗ n − 2 n . . . ∗ n − m + 1 n \frac{n}{n}*\frac{n-1}{n}*\frac{n-2}{n}...*\frac{n-m+1}{n} nnnn1nn2...nnm+1

发现和上面的式子是一样的,随便乱推都能推到

可以二分求,但是这精度…而且会爆 d o u b l e double double

然而…居然能过,数据太水还是咋的…

#include <bits/stdc++.h>
using namespace std;
int main()
{
	int t,casenum=0,n; cin >> t;
	while( t-- )
	{
		cin >> n;
		int ans=1; double p=1;
		for(int j=n-1;j>=1;j--)
		{
			p = p*j/n;
			if( p<=0.5 )	break;
			ans++;
		}
		printf("Case %d: %d\n",++casenum,ans);
	}
}
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页